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Thalamus Segmentation Based on the Local Diffusion
Direction: A Group Study

Sarah C. Mang,1,2* Ania Busza,1,3 Susanne Reiterer,1 Wolfgang Grodd,1,4 and Uwe Klose1,5

Fast and accurate segmentation of deep gray matter regions
in the brain is important for clinical applications such as sur-
gical planning for the placement of deep brain stimulation
implants. Mapping anatomy from stereotactic atlases to patient
data is problematic because of individual differences in subject
anatomy that are not accounted for by commonly used atlases.
We present a segmentation method for individual subject diffu-
sion tensor MR data that is based on local diffusion information
to identify subregions of the thalamus. We show the correspon-
dence of our segmentation results to anatomy by comparison
with stereotactic atlas data. Importantly, we verify the con-
sistency of our segmentation by evaluating the method on 63
healthy volunteers. Our method is fast, reliable, and independent
of any segmentation before the classification of regions within
the thalamus. It should, therefore, be useful in clinical applica-
tions. Magn Reson Med 000:000–000, 2011. © 2011 Wiley-Liss,
Inc.
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Many illnesses, including Parkinson’s disease, schizophre-
nia, and chronic pain syndrome, are associated with
changes in the thalamus (1–4). Dissection or stimulation
of certain regions in the thalamus can reduce symptoms
of some of these illnesses (5,6). Currently, surgical plan-
ning is based on MR imaging and anatomical predictions
created by mapping a stereotactic brain atlas onto visually
identifiable landmarks in the patient’s brain (7). How-
ever, anatomical variability of deep gray matter structures
relative to currently used atlases can make such tech-
niques challenging (8). Therefore, development of more
accurate and efficient segmentation techniques for deep
gray matter regions, such as the thalamus, is of increas-
ing clinical importance. Unfortunately, the thalamus has
a mostly homogeneous signal value in standard anatom-
ical MR images (see Fig. 1a). Segmentation of thalamic
nuclei is therefore not possible on these kinds of data sets.
Although some substructures of the thalamus are visible on
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higher resolution anatomical MR images or magnetization
transfer images (see for example (9–11)), high-resolution
imaging also increases the measurement time, which is
a disadvantage for clinical applications. Deoni et al. (9)
successfully used modified k-means clustering to segment
thalamic nuclei in high-resolution quantitative MR images.
The results of this method were very promising, however
the technique required manual segmentation of the whole
thalamus and prior information from stereotactic atlases
(12) to reduce the computational cost of the segmentation.

Other approaches use diffusion tensor MR-imaging (DTI)
to segment individual regions in the thalamus. DTI mea-
sures the direction of water molecular diffusion to detect
the dominant orientation of fibers in living tissue (for
details on DTI see for example (13,14)). It therefore has
a high potential to be useful in the segmentation of the
thalamus because individual thalamic nuclei have well-
structured fiber connections to defined cortical and subcor-
tical areas. Figure 1b shows an example of how diffusion
information can aid in distinguishing thalamic substruc-
tures. Indeed, there have been several reports of new
thalamus segmentation techniques using DTI technology
in recent years (15–21).

The methods proposed by Wiegell et al. (19) and Ziyan
et al. (20,21) use clustering methods to find an optimal sub-
division of the thalamus. In this approach, the number of
clusters to be segmented is predefined, and the voxels are
automatically assigned to the individual clusters according
to local diffusion tensor information similarity and spa-
tial proximity. The segmentation quality of these methods
depends to a large part on the number of clusters that is
chosen by the user and the quality of the manual segmen-
tation of the whole thalamus before the application of the
clustering algorithms.

The segmentation method proposed by Behrens et al.
(15,17) uses connectivity to cortical areas to distinguish
between individual regions in the thalamus. This approach
requires manual segmentation of the cortical regions as
well as extensive fiber tracking. The results are reliable
but require considerable computation time. They depend
on both the quality of the initial manual segmentation and
the quality of fiber tracking. The level of detail of the par-
cellation depends on the number of presegmented cortical
regions, which corresponds to the number of regions that
will be identified in the thalamus. An improved version of
the connectivity-based segmentation by Jbabdi et al. (16)
does not require the user to pre-emptively define the num-
ber of thalamic subdivisions. This method can show seg-
mentation quality similar to that of the original method by
Behrens et al. (15) but is still very sensitive to user-defined
parameters in the model used for the segmentation.

© 2011 Wiley-Liss, Inc. 1
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FIG. 1. DTI Segmentation. a: T1-weighted axial image of the thalamus showing weak intrinsic contrast, which prevents a detailed distinction
of thalamic substructures. b: DDO overlayed on a color-coded FA map demonstrating the enhanced intrinsic contrast (color maps the DDO
to RGB space). c: Unique color coding of the DOCs segmentation using the orientation-dependent coloring as defined in (f). The shape of
structures in digital atlases depends on the applied probability threshold and the atlas used. d: shows the difference between the thalamus
masks given by the Harvard-Oxford subcortical structural atlas taken from FSL (22) with a minimal probability of 5% (in dark to light blue) and
50% (overlayed in red to yellow). For the visualization of our results, we chose a mask with at least 50% probability from the Harvard-Oxford
sub-cortical structural atlas. e: gives the reference directions for the 21 DOCs and the corresponding color coding. The distributions of the
DOCs over the unit-sphere is shown in (f), where the centroids of the color-patches correspond to the reference directions.

The method proposed by Unrath et al. (18) uses only the
principal diffusion direction, presumably corresponding
to the local fiber orientation, for the identification of tha-
lamic subregions. This diffusion-direction-based method
is a simple and fast segmentation technique. In contrast
to the DTI-based methods previously described, classifi-
cation techniques based on the principal diffusion direc-
tion are much less sensitive to user-defined parameters
and do not rely on prior manual segmentation. The seg-
mentation method described by Unrath and colleagues is
able to resolve large thalamic sub-regions and therefore is
potentially useful in clinical settings.

Here, we present an adapted version of the segmenta-
tion method presented by Unrath et al. As opposed to
Unrath and colleagues, who grouped their reference ori-
entations into nine segmentation classes, we use the full
set of 21 reference orientations for a more detailed segmen-
tation. We evaluate our adapted segmentation method on
63 healthy subjects and show that the resulting segmenta-
tion corresponds well with known anatomical structures
of the thalamus, both in a group average and in individual
subjects. Furthermore, an evaluation of the center-of-mass
(COM) for different thalamic substructures identified by
our technique and probability maps for these substructures
shows that the segmentation results of individual subjects

are spatially consistent. Our results suggest that segmenta-
tion based on the dominant diffusion direction consistently
identifies substructures of the thalamus and, therefore, may
be useful in clinical settings.

MATERIALS AND METHODS

Subject Group and Data Acquisition

Data for the presented investigations were collected from
63 healthy right-handed volunteers (32 males and 31
females) between 20 and 40 years of age (mean 26.29
years ± 4.84, females mean 25.52 years ± 4.35), origi-
nally recruited for a nonassociated study. All subjects gave
written informed consent to the data acquisition and its
evaluation for research purposes.

T1-weighted anatomical images and DTI data were
acquired on a 1.5-T MR Scanner (Sonata, Siemens, Erlan-
gen, Germany). The T1-weighted images were acquired
with a modified driven-equilibrium Fourier transform
sequence with a TR of 7.92 ms, TE of 2.48 ms, and a voxel
size of 1 mm3. The DTI measurement included 12 diffusion-
weighted images (DWI) and an unweighted image for each
subject with the standard Siemens sequence covering the
whole brain with a b-value of 800 s/mm2 (TR = 6700 ms
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and TE = 82 ms). The in-plane resolution for the DTI data
was 2 × 2 mm2, the slice thickness 2.5 mm.

Preprocessing

For automated comparison of the individual subject
data, all data sets were aligned, interpolated to 2 mm3

isotropic resolution, and normalized to the MNI152 tem-
plate (2 mm3) from the FMRIB Software Library (FSL) (22).
First, the T1-weighted anatomy image was aligned with the
MNI template using the “flirt” routine in FSL. Then, an
affine transformation (flirt from FSL) was used to match
the individual diffusion-weighted images to the anatomy.
This step also compensated for motion during the DWI
acquisition. The corresponding gradient directions were
adapted accordingly (23–25). The tensor was then esti-
mated from the aligned data using the “analyzedti” func-
tion from Camino (26). Then, a nonlinear warp was applied
to normalize the anatomy image to the MNI template (fnirt
function from the FSL library). This transformation was
also applied to all individual tensor elements. Finally, the
orientation of the tensors was corrected using the “reorient”
routine from the Camino library (23,26) before the dom-
inant diffusion orientations (DDOs) were extracted from
these tensors.

Segmentation and Creation of Individual
Classification Maps

The segmentation method used in our group evaluation
is an adaptation of a previously presented segmentation
method that is based on the classification of local DDOs
(18,27). For each voxel, the DDO is computed by diagonal-
ization of the second-order diffusion tensor. It is assumed
to be equal to the eigenvector corresponding to the largest
eigenvalue. The direction of the diffusion process deter-
mined from DTI data is presumably symmetric, i.e., equal
in either direction on an orientation axis. Therefore, we
refer to DDOs and not directions. Example DDOs are
illustrated in Fig. 1b as lines.

To identify thalamic areas with similar DDOs, we use
a set of predefined reference orientations (Fig. 1e and f)
to classify every voxel in a data set based on similarity
between reference orientations and local DDOs. We did use
the set of reference directions proposed by Unrath et al.
(18). Each reference direction defines a diffusion orienta-
tion class (DOC) as shown in Fig. 1e. To construct the set
of reference directions first the three main axes (class I,
IV, and VII) are used. They define the octants of the unit
sphere that were used as basis for the subdivision of the
sphere proposed by Unrath et al. This can also be appre-
ciated on the color-sphere representation of the DOCs in
Fig. 1f. Each octant has a similar subdivision into nine
regions. Beside the three main axes each octant has three
reference directions consisting of a mixture of two of the
main axes (xy—VIII, IX; xz—II, III; yz—V, VI) and three ref-
erence directions mixing all three axes (class X–XXI). This
results in a total of 21 DOCs. In the classification step, each
voxel is assigned the DOC whose reference orientation r has
the least angular difference d from the voxel’s local DDO,

d(i) = arccos(|←−ri · ←−−−
DDO|). [1]

If the classification should not be unique, that is, a local
DDO has the same minimal angular difference to several
reference orientations, the voxel is assigned the first class
with minimal angular difference. A more detailed dis-
cussion on nonunique classification can be found in the
sections on partial-volume-effects.

For visual clarity, each DOC is displayed using a distinct,
unique color from the color-coding proposed by Demiralp
et al. (28). Each defined class along with its corresponding
color and reference orientation is given in Fig. 1e. DDOs
are assigned to the DOC into whose color patch they are
projected on the sphere depicted in Fig. 1f. The reference
orientations correspond to the centroids of each color patch
on the displayed unit-sphere.

We called the complete segmentation results of a single
subject, where each voxel is displayed in the color of the
corresponding DOC, an “Individual Classification Map”
(ICM). An example of an ICM is given in Fig. 1c. In an
ICM, there are connected regions consisting of neighboring
voxels that are assigned the same DOC. These connected
regions for the individual DOCs, which will be segmented,
are called “clusters.”

Evaluating the Intersubject Consistency

If individual clusters are spatially similar in the ICMs, then
the locations of their COMs would also be similar. There-
fore, we evaluated the COMs for the main clusters in the
ICM to investigate the intersubject consistency of our ICMs.
To calculate the COM, we used:

COM = 1
|Ω|

∑

i∈Ω

←−ai , [2]

where |Ω| is the number of voxels in the cluster Ω, and ←−ai

is the position of the ith voxel inside the cluster.
To restrict the COM evaluation to clusters that are most

certainly located inside the thalamus, the probability mask
from the Harvard-Oxford subcortical structural atlas (22)
was thresholded to contain only voxels that were inside the
thalamus with a probability above 50% (see Fig. 1d). The
mask is applied after classification and, therefore, does not
affect this step of the segmentation process. The individual
segmented clusters do not exceed the applied mask, their
borders might therefore be restricted by this mask.

Group Results in Comparison with Anatomy and
Stereotactic Atlas Data

Two kinds of group summaries were defined for compari-
son with higher resolution T1 images and atlas data. First,
we defined probability maps that show the overlap of cor-
responding ICM clusters in all subjects. If the probability is
100% in a voxel, this voxel is similarly classified in all 63
evaluated subjects. Second, we summarized the segmen-
tation results from individual subjects into a “Dominant
Classification Map” (DCM) for the entire subject group. In
this map, each voxel is assigned the DOC that occurred
most often in the corresponding voxel in individual sub-
jects. The DCM allows no overlap between the displayed
clusters, unlike the probability maps.
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Multiple slices in all three planes (sagittal, horizontal,
and coronal) of the DCM were visually compared with the
corresponding T1 slices taken from the template brain (1-
mm isotropic voxel resolution) provided by FSL (22). A
lower resolution version (2-mm isotropic voxel resolution)
of this template was used in the preprocessing of the data.
Similar slices from the probability maps were compared
with corresponding slides in the histological atlas (12) to
determine the correspondence of our segmentation results
to the anatomy presented in the atlas.

Partial-Voluming Effects

The discrete voxel resolution that is intrinsic to any MR-
imaging method does not allow the distinction between
pure gray matter and pure white matter in the thalamus on
our DTI data sets. A number of voxels will contain both
matter types, independent of the image resolution. This is
not a problem for our segmentation method, because gray
matter is believed to have an isotropic diffusion profile.
The gray matter part of a voxel will therefore reduce the
FA but will not affect the orientation of the DDO, on which
our segmentation is based.

Some voxels on the surface of the thalamus may con-
tain areas of neighboring cerebrospinal fluid (CSF) or fiber
bundles. As our segmentation approach uses the DDO of
a voxel for its classification, voxels comprised of mixed
thalamus/CSF or thalamus/external fiber bundles could
potentially interfere with our segmentation results. We
used FA value restrictions to exclude voxels that might be
affected by so-called “partial-voluming-effects” from our
analysis.

CSF is assumed to have an isotropic diffusion profile,
because the diffusion in the ventricles is not hindered by
closely packed anatomical boundaries such as neuronal
fibers or cell bodies. A voxel that partially consists of
CSF will therefore have a lower fractional anisotropy (FA)
value than a voxel containing only thalamic structures. We
assume that the thalamic component in a voxel is larger
than the CSF component if its FA value is above 0.1. Such
voxels are therefore used in our segmentation. The tha-
lamus also borders on larger fiber bundles with high FA
values. The FA of these bundles is considerably higher than
in the thalamus, where the FA is reduced by an inseparable
mixture of gray and white matter. We chose an upper FA
threshold of 0.5 to ensure that the thalamic component of
a voxel with lower FA value outweighs the part containing
high-FA-valued fiber bundles.

On the border between thalamic subregions voxels may
contain parts of different thalamic substructures with dif-
ferent fiber orientations. This may cause the local DDO to
lie between DOCs. The classification in this case is not
unique, because the angular difference between the DDO
and more than one reference orientation is minimal. In our
evaluation of nonunique classification, we did assume that
the angular difference between a local DDO and the refer-
ence orientations was similar if it deviated less than 1◦. We
evaluated how this case of partial-voluming affects our seg-
mentation results by investigating the number of affected
voxels and their location.

Table 1
The center-of-mass (COM) for the Individual Clusters in the Right
Thalamus Is Given for the Anatomically Most Relevant Clusters in
MNI Coordinates (in mm).

Mean (COM)
Avg (dev) Std

Cluster Class x y z (mm) (mm)

1 I 16.20 −30.06 4.14 1.10 0.66
2 II 19.72 −33.34 2.46 1.78 1.24
3 III 17.82 −23.04 4.94 1.48 0.70
4 VI 1.28 −7.50 9.20 1.72 1.14
5 VII 0.74 −14.78 8.52 0.86 0.56
6 XIII 11.96 −22.78 4.68 2.40 1.68
7 XIV 14.56 −19.64 2.66 2.30 1.32
8 XV 11.92 −15.81 7.26 2.32 1.54

To appreciate the similarity of the COMs for a certain DOC in individ-
ual subjects the average deviation (avg(dev)) of the individual COMs
from the mean(COM) and the corresponding standard deviation (std)
are given in mm.

Correction of Corrupted DDOs

Sorting bias is the result of noise and affects voxels
randomly by interchanging the diffusion directions (29),
which could result in false orientation classifications in our
segmentation approach. Also randomization in the sort-
ing of eigenvalues in spherical diffusion tensors may affect
the classification. Common methods to reduce corrupted
DDOs use neighborhood information (30,31). Although
these neighborhood-based methods are not able to com-
pletely eliminate error in the reconstructed DDOs, they can
decrease it considerably.

Here, we used our group data set to assess the effect of
corrupted DDOs on our segmentation results. We checked
each ICM voxel that had a DOC different from the DOC cal-
culated for the group DCM for corrupted DDOs. For each
of these voxels, the DOC for the minor diffusion directions
was determined and compared with the DOC of the DCM. If
one of the minor DOCs matched the one in the group DCM,
then the order of the eigenvectors for the voxel was cor-
rected accordingly. The number of voxels that were affected
by corrupted DDOs and the number of subjects whose vox-
els need correction were used to assess the overall effect of
corrupted DDOs.

RESULTS

Evaluating the Intersubject Consistency

In the presented evaluations, we concentrate on relatively
large clusters, which are consistently positioned in over
50% of our subjects. We therefore focus our investigations
on the clusters for DOCs I, II, III, VI, VII, XIII, XIV, and XV,
whose mean size over all ICMs is larger than 20 connected
voxels. For easier handling, the clusters are numbered from
1 to 8 as defined in Table 1.

The individual ICMs of the 63 evaluated subjects corre-
spond very well to each other. This is illustrated in Fig. 2b,
where the COMs of these eight clusters are shown for
all subjects. The COMs for each individual DOC lie close
together, showing the consistent placement of the clusters
in the individual ICMs.

A quantitative assessment of the consistency is given
in Table 1, where the position of the mean COM over all
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FIG. 2. The results are shown for several slices through the thalamus—the coordinates at the top are given in MNI space. a: the Dominant
Classification Map (DCM) illustrates the results of our DTI segmentation method from our entire subject group. For anatomical comparison,
the corresponding thalamic slices from the reference brain (22) with 1-mm isotropic resolution are also presented. b: COM coordinates
for major DOCs show strong intersubject consistency in location. Each dot corresponds to the COM of a DOC cluster from one subject.
Scatter-plots of all individual COMs for each of the major DOCs are shown. A schematic outline of the thalamus is included on each plane
for spatial reference. For better identification the color-coding of the COMs corresponds to that of the DOCs presented in Fig. 1. c: the
probability maps of the eight large clusters are given on the left. The displayed probabilities are restricted to the interval between 50% (fade
out) and 100% (opaque). The colors match the corresponding DOC. The corresponding slides from Morel’s atlas (12) are given on the right
and are colored to correspond the DOCs (slide number top/down: Horizontal: D4.5, D10.8; Coronal: P1.8, A7.2, A18; Sagittal: L5.4, L11.7,
L16.7).

subjects is given for each cluster. The consistency can be
appreciated by comparing the average deviation (avg(dev))
of the individual subject COMs from the mean COM for
each cluster and the corresponding standard deviation
(std).

The grouping of the COMs is especially tight for the clus-
ters that were discussed in the original work by Unrath
et al. (18), the lateral group (cluster 1 in blue), the frontal
group (cluster 5 in lilac), and the parietal group (cluster 2 in
dark rose and cluster 3 in dark blue). The average deviation
from the mean COM for these clusters is smaller than the
voxel size (less than 2 mm). The corresponding standard
deviation is also very small (see Table 1).

The COM for cluster 4 in brown also shows very good
intersubject correspondence with a mean deviation smaller

than the voxel size (2 mm), even though the cluster is much
smaller in size than the previously discussed ones. The
COMs for cluster 6 in dark green, cluster 7 in hunter green,
and cluster 8 in gray green are slightly wider spread but still
correspond well between subjects. Their average deviation
from the mean COM of the cluster was slightly larger than
the voxel size of 2 mm (see Table 1), but the corresponding
standard deviation is sufficiently low.

Comparison between Probability Maps and
Stereotactic Atlas

Figure 2c shows selected slices in horizontal, sagittal, and
coronal orientation through the probability maps of the
eight largest clusters in our results and corresponding
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slides from a well-known multiarchitectonic/stereotactic
atlas (12). The opacity of the probability maps indicates
the probability value. Completely opaque is equal to 100%
probability. The maps fade out when the probability for a
cluster drops beneath 50%. All the eight presented clusters
have large core-regions with probability values above 90%.

Through visual comparison of the cross sections of the
probability maps with atlas data (12), we identified the
major thalamic nuclei associated with each cluster. Our
observations are as follows: cluster 1 (DOC I; blue) con-
sists of a large portion of the caudal thalamus. It is slightly
more dorsomedially situated and includes most of the pos-
terior protrusion of the thalamus. We therefore conclude
that cluster 1 corresponds well with the pulvinar nucleus
(Pu), and the medial pulvinar in particular. Cluster 2 (DOC
II; dark rose) is also caudally located and consists of a
smaller area lateral to cluster 1. This area is consistent with
the location of the lateral pulvinar nucleus (PuL). Cluster
3 (DOC III; dark blue) is a larger cluster situated laterally
along the outer shell of the thalamus. It is anterior to the
pulvinar clusters (clusters 1 and 2) and correlates well with
the location of the ventral posterior lateral nuclei (VPL).
Other ventral posterior nuclei, such as the ventral postero-
medial or the ventral medial nuclei, may also be part of
cluster 3. However, the small size of these nuclei make it
difficult to determine their exact location within our DOC
clusters. Cluster 4 (DOC VI; brown) is our anterior-most
cluster. It consists of a dorsal area of the thalamus that
bulges out into the lateral ventricle, an area comprising
the anterior group of the dorsal thalamic nuclei, including
the anteroventral nucleus (AV) and likely the anterodor-
sal and anteromedial nuclei as well. Cluster 5 (DOC VII;
lilac) is a large area comprising most of the medial thala-
mus. In combination with cluster 8 (DOC XV; grey green),
these clusters include the thalamic area corresponding to
the medial dorsal nucleus (MD) medially and ventral lateral
nuclei (VL) and ventral anterior nuclei (VA) laterally. Clus-
ters 6 (DOC XIII; dark green) and 7 (DOC XIV; hunter green)
are smaller clusters that show high consistency. Cluster 6
is anatomically consistent with the location of the central
median nucleus (CM). Cluster 7 appears briefly in several
sagittal sections but does not correlate consistently with
any well-described anatomical subdivisions. We wonder if
it may be part of fiber bundles crossing at the lateral edge
of the thalamus. This described correspondence between
known thalamic anatomy and our segmentation classes is
illustrated by corresponding coloring of the atlas slides in
Fig. 2c.

Evaluation of the DCM

The clusters presented in the DCM (Fig. 2a) do not over-
lap and are not weighted according to their intersubject
correspondence as opposed to the ones presented in the
probability maps (Fig. 2c). A comparison between the prob-
ability maps and the DCM shows that the eight clusters
from the probability maps cover the largest part of the
DCM. The core regions of the eight clusters in the proba-
bility maps with high probability match the corresponding
clusters in the DCM well.

Some of the larger clusters in the DCM are not included
in the probability maps. The clusters of DOC IV show

probably part of the fornix and the capsula interna (dark
ocher in Fig. 2a). Therefore, it was excluded from the prob-
ability maps even though it has high probability values.
The clusters for DOC VIII (turquoise) and DOC XI (pear)
have only a small high-probability core region (less than 10
connected voxels with a probability value above 80%) and
were therefore not included in the group of major clusters.
These clusters seem to be more sensitive to imperfections
in the normalization, which will reduce the intersubject
correspondence and therefore the probability values. This
may also be due to their placement on a border between
CSF and the thalamus. These clusters might still represent
anatomically relevant regions and need to be investigated
further. Other clusters in the DCM that were not included
in the probability maps are small and therefore more vari-
able than the larger clusters. Their high-probability core is
reduced to individual voxels or small voxel groups (less
than five connected voxels with a probability value above
80%). The probability values of small clusters are more
sensitive to imperfect normalization because of the smaller
possible overlap of the clusters between subjects.

A comparison of the DCM with the higher resolution
anatomical images (Fig. 2a) shows that our segmentation
results correspond well with structures that are visually
detectable in the anatomical images, such as the pulvinar
nucleus (in blue). The border between the pulvinar nucleus
and the ventral posterior lateral nuclei (dark blue) can be
appreciated especially well in the horizontal cut at 4 mm
and the sagittal cut at 18 mm. In the sagittal cut at 1 mm
and the horizontal cut at 12 mm, the visually detectable
border between medial dorsal nucleus (lilac) and the ante-
rior nuclei (brown) is spatially correspondent to the border
in the DCM.

Partial-Voluming Effects

We evaluated how nonunique classification affects our seg-
mentation results. We found that ∼3% of the voxels in the
ICMs was affected by nonunique classification. Most of the
affected voxels were assigned to two DOCs. Approximately
3% of the nonuniquely classified voxels were assigned to
three DOCs. No voxel was assigned to more than three
DOCs. The relative number of affected voxels was inde-
pendent of thresholding of the applied thalamus mask. All
affected voxels were isolated and mostly located on the
border between clusters. No connected subclusters were
affected. Also, we could find no consistent placement of
these nonuniquely classified voxels within our subject
group. A single voxel position showed the maximum of
nine subjects (<15%) with nonunique classification. The
average number of subjects for nonuniquely classified vox-
els was 2.35 (std = 1.42), which is less than 4% of the
subjects. The effect of nonunique classification was not
considered to significantly affect the segmentation results.
Voxels with nonunique classification were, therefore, not
handled in a special way.

Correction of Corrupted DDOs

We investigated whether our segmentation results are
affected by corrupted DDOs. We found that only individual
voxels but no connected subregions of segmented clusters
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are affected by corrupted DDOs. Less than 1% of the vox-
els in each subject are affected. For these individual voxels,
a maximum of three subjects inside the masked thalamus
were biased, which is less than 6% of the subjects.

We also investigated the effect of corrupted DDOs if only
voxels with a probability greater than 50% were considered
for the DCM. In these voxels, one can assume that the classi-
fication in the DCM is likely accurate because randomness
would cause probability values below 50% in a large sub-
ject population with 21 segmentation classes. The results
were similar to the evaluation of corrupted DDOs with-
out probability thresholding. The effect of corrupted DDOs
was, therefore, considered to be negligible. No correction
was applied to the data presented here.

DISCUSSION

We have developed an alternate DTI-based thalamus map-
ping protocol, which is fast, reliable, more detailed than
previously reported segmentation methods, and indepen-
dent of manual segmentation. Although small thalamic
subregions are not detectable with our method because
of coarse image resolution and resulting partial volume
effects, larger subregions can be identified consistently in
a large number of subjects.

The computation time for our segmentation method is
very short. The required preprocessing was done in a few
minutes per subject on a standard processor. The segmenta-
tion of preprocessed DTI data required only a few seconds
in our reference implementation.

Our segmentation method is much faster than the
connectivity-based method proposed by Behrens et al.
(15,32), because no fiber tracking is required. It also avoids
the problems of the used tracking algorithm, such as accu-
mulated noise effects along the reconstructed tract, or the
effect of tract termination criteria on the reconstructed
connectivity.

Additionally, unlike a connectivity-based approach, our
method can in theory identify thalamic subregions that do
not have a direct connection to the cortex. This is important
because the thalamus consists of two kinds of nuclei: spe-
cific nuclei, which have a direct connection to well-defined
cortical regions, and unspecific nuclei, which are not
directly connected to the cortex but have indirect connec-
tions through other (specific) nuclei. Previously described
connectivity-based methods (15–17) cannot separate the
unspecific nuclei from the specific ones they are connected
with. Our segmentation method does not necessarily group
unspecific nuclei in the thalamus with the specific nuclei
they are connected with. Only local diffusion information
is evaluated in our segmentation approach. A remaining
difficulty with identifying unspecific nuclei is that they
are usually very small and therefore cannot be resolved in
data sets with a voxel resolution as coarse as the one in the
data evaluated here. Improvement in image acquisition will
likely lead to improved voxel resolution in the future and
may allow for accurate identification of unspecific thalamic
nuclei with our method.

The presented segmentation method does not require any
manual interaction. The masks and FA-thresholds applied
to the presented data are only used after the classifica-
tion of all voxels. They help focusing the visualization

of the segmentation results on the thalamus by exclud-
ing structures bordering on the thalamus. The masks and
thresholds do not affect the actual classification results.
In contrast, the previously presented DTI-based segmen-
tation methods (9,15,19–21,32) all require segmentation of
the whole thalamus before the segmentation of thalamic
substructures. Especially in clustering-based segmentation
methods, the segmentation of the whole thalamus will
not only influence the segmentation of the individual sub-
thalamic regions but also affect the classification process.
Clustering methods do not only consider local features but
also spatial proximity of the voxels that are classified. Vox-
els neighboring a specific cluster might be added to this
cluster if spatial proximity outweighs the feature part. The
connectivity-based thalamic subdivision (15,32) uses only
the connectivity of the individual voxels to classify the
voxels within the thalamus for the segmentation. The size
of the manually segmented thalamus mask will affect the
time required for the segmentation, because every voxel
within the thalamus mask will be processed in the time-
consuming fiber-tracking. The accuracy of the segmenta-
tion of cortical target regions will affect the classification
of the voxels within the thalamus. Manual segmentation
is subjective and dependent on the individual that defines
it. Therefore, it adds another cause for variability to the
results.

To reduce the variability in the results and increase their
reproducibility, the segmentation of the thalamus or cor-
tical regions could also be acquired from digital atlases.
The contours taken from probabilistic atlases such as the
Harvard-Oxford subcortical structural atlas (22) depend on
the selected threshold applied to the probability. The dif-
ference in the contours between a minimal probability of
5 and 50% can be appreciated in Fig. 1d. The contours
of structures taken from different atlases with the same
probability may also deviate considerably. Even though
the use of atlases reduces the variability in the segmenta-
tion, the differences in the contours taken from the atlases
will influence the results of the thalamus segmentation as
discussed in the previous paragraph. This will hinder inter-
study comparison, if the exact same parameters were not
used to determine the contour of the whole thalamus and
the required cortical regions.

Our segmentation shows more detail than the method
proposed by Unrath et al. (18), because we use 21 distinct
DOCs instead of combining the 21 reference orientations to
9 DOCs. Our 21 DOCs can be translated into the DOCs used
by Unrath et al. by combining the major-diagonal DOCs II
and III, DOCs V and VI, and DOCs VIII and IX, and combin-
ing the minor-diagonal DOCs (X-XXI) into groups of four
({X, XIII, XVI, XIX}, {XI, XIV, XVII, XX}, {XII, XV, XVIII,
XXI}). This reductionist method has several useful features.
It allows for easier appreciation of interhemispheric sym-
metries, because symmetric clusters now belong to a single
DOC. In our approach, the symmetry problem could be han-
dled by inverting the corresponding reference orientations,
i.e., using a mirrored color sphere or mirrored reference
orientations for one hemisphere to ensure that symmetric
clusters of the two hemispheres belong to the same DOC
in our segmentation. The most prominent advantage in
using 21 DOCs is the distinction between clusters 2 (DOC
II; dark rose) and 3 (DOC III; dark blue) as shown in Fig. 2.
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These two prominent clusters were grouped together in the
classification with nine DOCs (18).

A reason why Unrath et al. may not have considered
some of the clusters that we present is their small size in
comparison with the size of the three dominant clusters
they presented. The greater number of DOCs in our method
as well as the large size of our subject group and improved
data quality allowed us to identify additional clusters, even
if they are relatively small. For example, cluster 4 (DOC
VI; brown), which shows very low mean deviation (less
than a voxel) in the COM of the individual subjects. The
large number of subjects that show corresponding clusters
in the same position after normalization suggests that even
small clusters represent anatomically meaningful areas,
which could not be appreciated well on the nine subjects
investigated by Unrath and colleagues.

The inter-subject agreement of COMs for individual clus-
ters demonstrates that the segmentation results from indi-
vidual subjects correspond well to each other. The results
can therefore be called reliable. Even smaller clusters, such
as clusters 4, 6, 7, and 8, that have not been presented
previously have a good interindividual consistency, and
therefore, we believe them to be anatomically relevant.

The similarity of our segmentation results to anatomy
from a classic stereotactic atlas (12) is shown in Fig. 2c.
The DCM and probability maps, summarizing the results
from all 63 individuals in our subject group, corresponds
well to previously described anatomy as shown in Fig. 2.

The speed in which our segmentation is done (a few sec-
onds on preprocessed DTI data; preprocessing requires a
few minutes) permits its application in clinical context.
As our method does not require user interaction, the seg-
mentation can be computed without supervision for later
evaluation by experts.

Ziyan et al. evaluated several metrics on DTI data for their
spectral clustering (20). They found that angular difference
between DDOs produces the best segmentation results.
This supports our choice to use angular difference for the
classification step in our segmentation.

Our method is based solely on the dominant diffusion
direction and could, therefore, be affected by DDOs cor-
rupted due to noise or random errors on spherical diffusion
tensors. As our investigations found that only a small num-
ber of individual voxels are affected by the corrupted DDOs,
we believe the effect on the final result is negligible. There-
fore, we did not include a correction for corrupted DDOs
in our protocol.

In our classification, DDOs that have a similar min-
imal angular difference to more than one reference
orientation are not handled separately. We found that
nonunique classification affected our segmentation results
only marginally. Voxels with nonunique classification were
therefore not processed differently from uniquely classified
voxels.

To extend the work by Unrath et al. (18) in our inves-
tigations, we used the same set of reference orientations.
These reference orientations are neither equiangular nor
equidistant on the surface of the unit sphere. Improving
the tessellation of the unit-sphere described by the refer-
ence orientations may improve the segmentation results. A
different approach for improving the set of reference ori-
entations is not based on a geometrical tessellation of the

unit sphere but considers fiber orientations from anatomy.
The borders of the segmented clusters could possibly be
improved if the reference orientations were chosen based
on anatomy. The optimization of the reference orientations
and the effect of this optimization are the topic of future
investigations. However, the consistency of the segmenta-
tion between individual subjects and the correspondence
of our segmented clusters with previously identified nuclei
suggests that our geometrical distribution of reference ori-
entations is already a good approximation of reference
orientations based on anatomy.

Our segmentation method can be applied to any fibrous
structure, which means it is not restricted to the thala-
mus. The usability of our segmentation approach for other
regions in the brain is under investigation.

CONCLUSIONS

On the basis of the local DDOs. The segmented clusters
show good intersubject consistency in normalized data sets
of a large subject population. The method is very fast and
independent of segmentation of any kind before the subdi-
vision of the thalamus. Therefore, we believe our method
may prove to be useful in clinical applications.
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